

# Homework solutions 2



What is the result of:

$$1 + 2 * 3$$

What will the value of B be after executing these three lines of code:

$$A = [2,3,4]$$
  
 $B = (A,A)$   
 $A[2]=5$ 

Rewrite this comparison in a simpler form:

$$a < 4 \text{ or } a > 4$$

Which of these code continuations are valid?

$$A = [1, 2, 3]$$

$$A = 1, 2,$$
3

$$A = (1, 2, 3)$$

What is the result of:

same as

7

What will the value of B be after executing these three lines of code:

$$A = [2,3,4]$$
  
 $B = (A,A)$   
 $A[2]=5$ 

B is a tuple that contains to pointers to A. We changed A so B changes:

```
>>> A
[2, 3, 5]
>>> B
([2, 3, 5], [2, 3, 5])
```

• Rewrite this comparison in a simpler form:

$$a < 4 \text{ or } a > 4$$

This requires a bit of thought. Comparison a < 4 is True for a = 3, 2, 1, ... while comparison a > 4 is True for a = 5,6,7,... Thus one of the two comparisons will be true for any value of except 4.

Which of these code continuations are valid?

Fine A = [1,2,3]

Invalid A = 1, 2,

A = (1,2,Fine 3)

Fine
A = (
1
+
1
)

Using a while loop, write a short Python script to compute n factorial [=n\*(n-1)\*(n-2)\*...2],
 where n is a Python variable containing a positive integer

```
>>> n = 5

>>> prod = n

>>> while n > 1:

... n -= 1

... prod *= n

...

>>> prod

120

>>> 5 * 4 * 3 * 2

120
```

- Using a while loop, write a short Python script to compute n factorial [=n\*(n-1)\*(n-2)\*...2],
   where n is a Python variable containing a positive integer
- Do the same thing using a for loop with the range function

```
>>> n = 5

>>> prod = 1

>>> for i in range(2,n+1):

... prod *= i

...

>>> prod

120
```